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PREFACE

The photodiodes described in this report were designed under

contracts DNA001-77-C-0174 and DNA001-78-C-0050. The photodiodes were

constructed under contract DNA001-78-C-0356 and were tested under contract

number DNA001-80-C-0140. These devices were designed, constructed, and

tested to support the development by the USAF (Advanced Ballistic Re-entry

System and Ballistic Missile Office) of a dormant inertial navigation

system (DINS), employing laser gyroscopes.
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1. INTRODUCTION

This report documents the characterization of the 1arris/DINS

photodetectors in optical and ionizing radiation. Section 2 is a his-

torical review of the events which proceed construction and testing of

these diodes. Section 3 reviews the relevant physics involved in the

design and construction of these devices. Section 4 describes the actual

steps employed to construct the devices and provides the results of a

visual examination. Section 5 describes these tests and presents the

relevant results.

2. HISTORICAL REVIEW

In late 1976 the Air Force decided to examine the ring laser

gyroscope constructed by Honeywell Incorporated as a candidate for a

re-entry vehikle guidance system called the dormant inertial navagation

system (DINS).

Under Defense Nuclear Agency sponsorship, the nuclear surviv-

ability and vulnerability (S & V) of the laser block assembly and associ-

ated electronics was examined theoretically and tested experimentally

between February and September of 1977. At the time of this initial

investigation, Honeywell was using a commercially available photodetector

(United Detector Technology's PIN-SPOT-2) to detect the motion of the

interference fringes which indicate rate and direction of gyro rotation.

5



Our initial evaluation, which was supported by subsequent measurements,

was that for this laser/detector combination the optical radiation photo-

currents would be exceeded by ionizing radiation photocurrents, whenever

the dose rate exceeded 102 rads(Si)/s. An error analysis indicated that

laser gyro operations could be interrupted by a transient radiation event

for no more than approximately 1 millisecond. Relating this to a hypothe-

sized nuclear event caused us to select a dose rate of 107 rads(Si)/s as

an operational design goal. At that time we found there were no commer-

cially available photodiodes which could even approach that goal. In fact

the signal to noise (S/N) ratio of event the most radiation tolerate photo-

diodes fell below unity at rates of approximately 3 x 103 rads/s.

This was only a consequence of the designs then available. It

was not a technology limitation, and so by September 1977, we concluded

that, although there were no commercially available substitutes, it was tech-

nically feasible to build a DINS-specific photodiodeoptimized for use

with the ring laser gyro, in a radiation environment. 1,2  The reasons for

the specific design are presented in Section 3 and the details of the con-

struction are presented in Section 4. This design is related to work re-

ported by Mitchell 3 and photodiodes designed for AFWL for fiberoptics

applications, by Arnie Kalma and Walt Hardwick, which have since been

constructed by Spectronics. The specific design for the radiation hard

DINS photodiode was given to the Defense Nuclear Agency in December 1977.

This design was a compromise, using proven, high confidence, existing

technology techniques, optimized to result in a photodetector which would

operate with a signal noise ratio in excess of unity at dose rates of

107 rads(Si)/s (- 10 x higher than was possible in 1977).

Several device manufacturers were asked to construct the DINS

diodes. Only Harris responded affirmatively. The proposed design for the

photodiode was supplied to Jon Cornell of Harris Semiconductor in January

of 1978. A technical meeting was held at Harris Semiconductor in February

of 1978 attended by the Defense Nuclear Agency representatives. The



proposal resulting from that meeting was dated June 1978 and the first

generating of parts was supplied by Harris Semiconductor to Honeywell

for testing approximately one )ear later. The first generation of DINS

photodiodes were tested in July of 1979. That generation of chips had
4

several geometry design variations and two doping density variations.

There was no significant performance difference among the various geometry

variations.. Some of the doping variations exhibited poor electrical

characteristics (specifically -10 percent of the diodes were shortened)

and only a few of the diodes approached the desired 1 percent photo-

current matching. Exact photocurrent matching was desired because we

intended to illuminate only one of a pair of identical photodiodes supply-

ing signals to a differential amplifier (see Figure 1). Thus the (common

mode) ionizing radiation photocurrent ly (considered to be CIV noise) from

the blind diode would be subtracted from the (differential) optical signal

plus (common mode) noise from the sighted diode. Our ability to cancel

noise depends on diode matching and common mode rejection ratio of the

amplifier.

NI LIV

'b

Figure 1. Use of a blind diode and a differential amplifier
to subtract radiation noise from the optical signal.
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In fact, a small but constant photocurrent mismatch in the diode

pair could be tolerated if RF or RI were adjusted to compensate for this

mismatch. Unfortunately we noted that photocurrent mismatch was a function

of total accumulated dose. In particular if Ib = 1.05 Is before irradia-

tion Ib = I about S0 K rad and Ib = 0.85 I at 100 to 200 K rad. (Ib is

blind diode photo current Is sighted photodiode current).

The results of the optical and radiation tests were provided to

Harris Semiconductor in August of 1979 and larris set about to construct

a second generation of test chips. The second generation of test chips

used a different metalization pattern than the first. Also, Harris report-

ed they had experienced wafer processing problems with the first generation

and chose to fabricate new wafers for the second generation of device. The

second generation of photodiodes was provided to Honeywell in early 1980

and was tested by MRC in May 1980.

3. Relevant Physics

Carrier generation by ionizing radiation results in radiation

photocurrents that can temporarily obscure the optical photocurrent.

Carrier removal and lifetime degredation permanently alter the collection

volume by increasing the depletion depth and decreasing the diffusion

length in the bulk material.

Photodiodes, phototransistors, and solar cells are designed

to have maximum sensitivity to optical radiation. For maximum efficiency

and ease of construction, photodetectors are frequently much thicker than

[st( )] -, the optical absorption absorption depth at wavelength \ (632.8 nm

in this case). The bulk material usually has a long lifetime to obtain a

maximum collection efficiency for minority carriers. Generally, the same

features that make a good photodetector also make the device very sensi-

tive to all nuclear radiation.

8 4-" {
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The responsivity (amps/watt) of a planar photodetector is given by

I /HA -nq (1-R) hv > 1.1 eV (1)
V/ hv

where I is the photocurrent

H is the irradiance (watts/cm2)

A is the detector area

1 is the collection efficiency
nq is the photoelectric charge generated per photon

hv is the photo energy, and

R is reflectance.

The quantity q/hv is the maximum responsivity possible (0.509 A/

watt) at 632.8 nm. The coefficient Ii represents the optical collection

efficiency, 11-- 1 -exp[-a(L+W)] where a is the optical absorption coef-

ficent, L is the diffusion length, and W is the depletion width. The

optical absorption coefficient for silicon is given in Figure 2. At

632.8 nm, a Si(632.8 nm) = 3,600 cm-1 so a -1(632.8 nm) = 2.8 pm. The col-
lection efficiency expresses two facts. First, the number of optically

generated photocarriers decreases exponentially with distance from the

front surface, and second that only carriers that are generated within the

depletion width (W) and/or within a diffusion length (L) of the junction

edge will supply current to an external circuit. Carriers generated deeper

in the bulk material will recombine before they can contribute current to

an external circuit. But, if (L+W) > [c(X)] -1 radiation induced photo-

currents can be generated and collected from depths which contibute nearly

no optical photocurrents.

When a photodetector is exposed to penetrating radiation, such as

silicon-prefiltered light, x-rays or gamma-rays, the radiation photocurrent

can be described by

I y/D = gAq(W+L) (2)
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Figure 2. Absorption coefficient (left) or absorption depth
(right) vs. wavelength for silicon and germanium at
room temperature (Dash and Newman).
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where D is the dose rate, q is the electronic charge and g, the generation

rate for silicon, is - 4 x 1013 carriers/cm3 rad. For silicon,

-6 A-sec
I Y/D -r6.4 x 10 x A(L+W).

It has been shown in Reference 3 that the ratio of optical to radiation

photocurrents at 632.8 nm continues to increase as L+W decreased, however,

the total optical photocurrent, for a given irradiance decreases as L+W

gets less than a few absorption layers thick.

The most important factor is that optical photocurrents of

632.8 nm light are all generated within the first few micrometers of

silicon surface, whereas radiation photocurrents are generated throughout

the depletion volume, (detector area (A) times depletion width (W)). For

lightly doped diodes, with planar geometry, depletion width (W) is

related to bias voltage V as

W =4266oV/qN

wo 8.85 x 10- 14 Farads/cm, q = 1.6 x 10- 19where £ = 13 for silicon, o .5x1 Frd/m =16xil

coulombs and N is the doping density. Doping density is inferred from

material resistivity p = (q(N e e + Nhph)) -I where Pe = 1300 cm 2/Vs and

h = 450 cm 2/Vs. In the field-free bulk region, the minority carrier

lifetime (TD) and the diffusion length (L) are related by

LD/
SD = L2 /D

where D is the diffusion constant (33 cm 2/s for electrons and 11 cm 2/s

for holes in silicon).

flense the ratio of optical currents to radiation photocurrents

depends upon detector geometry as (from equations 1 and 2)

11



V {l- exp [-a(L+W)]} (l-R)
I hvg (L+W)

From a practical point of view, you want to maximize both the signal and

the signal/noise ratio (I 2/1 Y). The product of optical photocurrent

times signal/noise ratio has a broad maximum when L+W - 1.5 [(A)]-1. This

was the reason for the design goal presented to Harris Semiconductor, to

construct diodes approximately 5 wm thick.

An added bonus is that a very thin detector becomes quite neutron

and total dose tolerant as well, since the lifetime T must be reduced to

approximately the sweep-out time T before carrier recombination causes loss

in detector sensitivity. Sweep-out time is T = W /2 lV, where p is mobility

(Pe = 1300 cm2 /s,h = 450 cm2/s in silicon). For the designed geometry

(W < 5 x 10- 4 cm) and bias voltages (V ; 10v) T - 10- 10s. Lifetime is de-

creased by neutron radiation according to the formula l/T = l/T + K(p)@

where the lifetime damage constant K(p) is shown in Figure 3. Since T0
-6

10 s, and << T we don't expect detection degradation at neutron fluences
5 0

of less than about

=(KT S)- 2 x 1015n/cm 2

which is well above our design guideline.

The lateral geometry of the photodetector was selected somewhat

arbitrarily. The laser gyro's output beam, with its interference pattern,

is nominally 1 mm in diameter. This author judged that it would be easy to

reduce that pattern by a factor of 4, to a mm (0.010") diameter and that

positioning a mm detector with a 1 mm diameter reducing lens within the

1 mm diameter interface pattern would not be unduely difficult.

4. CONSTRUCTION

Figure 4 schematically indicates the processing steps Harris used

to create the 5 pm thick detectors. In step #1 they took a 20-mil (500 pm)

12
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Figure 3. Lifetime damage constant virsus resistivity for silicon at very
low injection (An/no - 10- ). At normal operating currents in
transistors the damage constant may be less by a factor of 5 to
10.)
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100,

7_ 500_ (0.020") thick wafer
of lightlydoped (_ 5 cm)

Step I N- SiI icon 500",In n-type silicon oriented
Stp,-Slio xsnormal to the 100 crystal

~ axis.

(NA;'I 11 11 2. 5.ni 2 .51jnm (0.0001") thick

-1 phosphorus diffusion.Step 2 N_ T

56
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Step 3 
thick).

POLY50J Deposit - 650Q.m of poly-
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will become Lhe substrate.
Step 4

N-

250 rn t--

Invert wafer and grind away
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N- Polycrystalline
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p+ regions, oxidize and

Step 6 meta!l ie as required.
Step 6

Figure 4. Summary of processing steps to produce radiation hard dielectri-
cally isolated photodetectors.
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thick slab of lightly doped (3-6S2 cm) crystalline silicon cut normal to

the 100 axis. In step #2 phosphorus was diffused about 0.0001" (2.5 -im)

into the n crystalline silicon to form a thin n + phosphorus doped region.

Then in step #3 the crystalline silicon was masked, etched, and oxidized

to form a series of oxide covered mesas which later became the dielectric

tubs which define the device geometry. In step #4 polycrystalline silicon

was deposited on top of the oxidized crystalline substrate, then in Step

#5 the polysilicon became the device substrate and the crystalline material

was ground away to form thin (0.0002") devices. Finally, the p+ front

contact was produced by a boron implantation technique. The final detectors

were semi circles 10 mils in diameter separated by about 0.5 mil and con-

tained in a 0.2 mil thick dielectric tub.

The final oxidation was controlled in an effort to produce an

antireflecting layer of thickness t =(2N + 1) A/4n where N is an integer,

n is the index of refraction of the coating and A is 632.8 nm. Both

oxide and nitride A.R. coating were tried.

The reflectance at a single interface between a media with index
2

of refraction n and one with n, is R = (n-n0/n+n )2 = 30% for silicon.

For a single layer filter the reflectance is

2 
2

R =[ 2 (3)
nl + non2J

where for air, O 1.0, for silicon at 632.8 nm n2 = = 3.68, for

SiO 2 n1 - 1.5 and Si3N4 n1  2.0. Notice the ideal single layer filter

at normal incidence would have an index of refraction n1 = (Eo = 1.899

and thickness t = 833 nm (or 250 nm, or 416 nm etc.).

From equation 3, the best one can expect for SiO 2 (n = 1.5) is

about a 6 percent loss due to reflection if t = 110 nm, while a 80 nm

is



thick layer of Si3N4 gives only a 0.16 percent loss. Conversely, the worst

one can do, is deposit a layer of thickness t = X/2n which would result in a

SiO9 coating with only 85 percent transmission and on Si3N coating which trans-

mitts 72 percent. Either case is an improvement over uncoated silicon.

Harris considered a two layer AR coating of SiO 2 and Si3N4 and

concluded that it was more reflective than, i.e. not as good as, a single

layer coating. We note this is apparently in contradiction with the

findings of solar cell manufacturers. 7' 8 However, it is this authors

opinion that a properly deposited single layer AR coating of either Si0 2

or Si3N 4 would be satisfactory, and that the potential of an additional

1 to 2 percent improvement from a "perfect" AR coating doesn't warrant a

significant effort. The potential for error and/or device degradation

increases with each successive process, and better results almost always

are obtained from familiar actions, i.e. SiO 2 is preferable to less fre-

quently used materials. Consequently this author agrees with Harris'

conclusion that the best AR coating is a single ?/4 layer of SiO2 or

Si3N4 (albiet for different reasons).

When this design was originally proposed, the lens for reducing

the interface pattern was not defined. Since then, Honeywell has selec-

ted an immersion lens concept, schematically indicated in Figure 5. In

this design the thick plano-convex lens is cemented directly to the chip

with an optical cement. This means the single layer SiO 2 or Si3N4 AR

coating, which was optimized for an air-silicon interface is no longer

the best.

Although this may represent an unwarranted nicety, the proper

design would now be a X/4 layer of material with n -- . (MgF2 perhaps)
2

on the front surface of the lens (to reduce the 4 percent reflection at

that interface) and another A/4 layer of material with index of refraction

n = nsi 52 nSi on the detector to reduce the reflection at the lens

16



AR Coating
n ;-1.2 to 0
match the air-glass inter- /

face

\ /

\ Gass
Immer s ionLens

Glue

Detectors
AR Coating n--2.2
to match the glass-
silicon interface

Figure 5. Schematic cross section of a dielectrically isolated
photodiode pair, with glass immersion lens and AR
coating.
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detector interface. Titanium oxide, TiOx, n = 2.2 or tantalum oxide, Ta2 05

with n = 2.2 i 0.05 are good candidates. Finally, it is theoretically

feasible (though unnecessary for this application) to make even more radia-

tion tolerant photodiodes, without sacrificing 632.8 nm responsivity by

1) making the diodes still thinner, 2) further reducing their lateral di-

mensions and 3) encapsulating them in a reflective tub. This could (theo-

retically) be accomplished with a thin (- 0.1 pm) evaporated aluminum

layer between the oxide of the tub and the polycrystalline substrate, or

by controlling the oxide thickness to produce a dielectric mirror. Both

these concepts were known to this author when the original design was

proposed in 1977-78. However, they were not proselytized because they

were not common semiconductor industry practices and represented an unnec-

essary risk. "Good enough" diodes could be made without developing these

techniques. This is still the case for the DINS application, and these

concepts are mentioned only to point out that we have not exhausted all

possibilities. Someday, someone may need an even harder detector and

he should consider these ideas.

Figure 6 is a microphotograph of the first generation DINS photo-

diode chip (#984, 1978). In this mosaic photo the semicircular structures

are the photodiodes. Squares around the periphery of the chip are the fly-

wire bonding pads, retangular structures with interleaved fingers are field

effect transistors, (FET's) and S shaped structures are load resistors.

Originally Harris intended to accomplish the first stage of amplification on

the photodiode chip using JFET devices whose thickness is approximately the

same as the photodiode. This idea eventually had to be discarded because

the photocurrents in the JFET structures were large compared to those gener-

ated in these rad hard diodes or in vertical bipolar transistors, which are

thicker devices with smaller lateral dimensions. As can be seen in Figure 6

neither the resistor nor the JFET devices were pinned-out and consequently

were not tested. In this photo the light-colored, granular, areas are

sputtered aluminum. The dark featureless areas are AR coatings, and the

18



Figure 6. Microphotograph of Harris/DINS photodiode chip
('-OX magnification) 1st generation ::984, 1973.



gray featureless areas are passivating oxides. As a result of the July

1979 test series, Harris Semiconductor was requested to build a second

test structure shown in microphotograph Figure 7 (chip #1061, 1979). On

this second generation photodiode chip, only four load resistors and

four photodiodes were constructed and/or pinned out. Harris made 4 var-

iations on the same theme. All devices fabricated from slice #7 had re-

ceived the phosphorous diffusion described in step 2 of Figure 4, and are

referred to as buried-layer devices. All devices from wafer #13 had not

received the phosphorous diffusion and, therefore, the bulk of the photo-

diode was of uniform 3-6 cm resistivity. All devices of Type I had one

diode pair which was sensitive to optical radiation (sighted) and another

diode pair which had been covered with aluminum (blind). Figure 7 shows

such a structure. All chips of type II had four identical diodes (no

blind diodes). A type II device is shown in Figure 8. All of the resistors

on type I DINS chips had an aluminum over layer shown in more detail in

Figure 9A. Resistors on Type II chips were not over coated with aluminum

as shown in Figure 9b.

5. TEST AND RESULTS

In this section we describe the results of some electrical, optical

and ionizing radiation tests.

The purpose of the electrical tests was to determine whether the

individual devices had the correct characteristics. Electrically all of

the diodes and resistors checked (about 200 each) were exactly as reported.

The optical tests, were to determine the optical photocurrent response

matching of both the resistors and photodiodes. This will be described in

greater detail in the following paragraphs. Finally a rudimentary special

response measurement was made on a limited number (about 60) of the photo-

diodes.

20
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Figure 9a. Microphotograph at about 500X of the dielectrically isolated,
ion implanted, 30 kQ load resistor on a type I (slice 7) chip.

Note the aluminum cover.

Figure 9b. Microphotograph at about 500X of the same load resistor with-
out the aluminum cover (slice 7, type II).
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5.1 METHOD

Before the ionizing radiation test the transient response of the

photodiodes and load resistors was checked using a Vivitar Model 225 high

pressure zenon photo flash. This confirmed that both the resistors and

photodiodes exhibited some photocurrent response, however, the zenon flash

evidently contained so much infra red radiation that the sighted and blind

photodiodes responded nearly identically. This check served its primary

purpose which was to confirm that the chip was correctly wired and biased,

in preparation for the ionizing radiation tests.

The optical response characterization was something of an improv-

isation since there was neither time nor funding to perform an in-depth

study. A Kodak model 75011 35 mm carousel slide projector was used to

measure the spectral responsitivity and optical photocurrent matching of

additionil photodiode chips. The Kodak 750H has a 250 watt tungston halo-

gen lamp with reflector, a cold mirror, and heat absorbing glass prior to

the projector lens. The projected light was further concentrated with an

F/I convex lens. Approximately monochromatic light was created by pro-

jecting light through color transparencies. The spectral transmission

characteristics of these transparencies is given in Figure 10. The intensi-

ty of the light appeared to be uniform with 10 percent across the center

7S percent of the beam. Most of the optical measurements were taken with

an irradiance of from 0.01 to 0.1 watts/cm 2. An Optical Coating Labora-

tories Inc. (OCLI) model 51 PL solar cell was used as a "standard" compar-

ison detector. This is a common off-the-shelf detector whose spectral

response is approximately known. To define the illuminated area and reduce

the photocurrent from the OCLI photo cell which is ! x 1 cm it was placed

behind an aluminum sheet with a 0.029 inch pin hale. Using this technique

the photocurrents from the Harris DINS photodiodes could be directly com-

pared to the photocurrent from the OCLI solar cell when exposed to white

light or any one of 6 color filtered beams, both the Harris and OCLI photo

detectors were reverse biased at 9 volts. The results of optical photo-
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current matching tests are indicated in Table 1. On the average, all

photodiodes on any given clip produced photocurrents which matched to

approximately 1.5 ± 0.5 percent, for nominally identical illuminization.

This author is not prepared to certify that the illuminization was more

unifoxm than 1 percent over the time or space required for the measure-

ments.

The results of the spectral response measurements are indicated

in Figure 11. This data was obtained by ratioing the measured photocurrent

from the DINS diodes and OCLI solar cell (scaled for the different illumi-

nated areas). Figure 12 shows the raw data for 8 different photo cells,

two each of the four variations, representing unirradiated cells and cells

which had been exposed to one megarad of 10 MeV electron radiation.

Although there is insufficient data for significant statistics

it appears that the responsitivity of the irradiated cells is no less than

75 percent of the unradiated cells. The absolute magnitude of responsivity

appears to vary by approximately ± 30 percent from chip to chip.

The response of the Harris photodiodes is very nearly what one

would expect. The responsivity is on the average somewhat better than the

OCLI solar cell at wave lengths below approximately 0.7 microns, probably

because the Harris photo cells have an AR coating and the OCLI cell does

not. The spectral response of the Harris photo cells decreases rapidly

compared to the OCLI solar cell for wave lengths greater than 0.7 microns.

This is almost certainly because the optical absorption coefficient de-

creases rapidly with increasing wave lengths (see Figure 2) which means

that fewer carriers per photon are generated in the 5 micron thick Harris

photo detectors than in the 130 im thick OCLI cell. These data indicate

that the Harris/DINS photodiodes have a responsivity of approximately

0.4 ± 0.1 amps/watt at 0.6328 microns. This means that, within the uncer-

tainty of these measurements, Harris met their design goals.
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Figure 11. Spectral response of a perfect silicon photodetector, a high
quality silicon photodetector, a typical solar cell and the
Harris/DINS photodetectors. The DINS detectors response
varied by - t300" from chip to chip.
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5.2 RADIATION TESTS

The purpose of these ionizating radiation tests was to measure the

(1) total current generation constant and (2) photocurrent matching, for

nominally identical photodiodes. Based on geometry and physics we expected
-13

a generation constant Q/D = 7.8 x 10 coul/rad. As a result of this test

we measured Q/D = 5.7 ± 1.8 x 10- 13 coul/rad for (60 photodiodes).

5.3 EXPERIMENT DESCRIPTION

This test was conducted at the IRT Electron Linear Accelerator

(linac) operated at 10 MeV, with a 100 ns pulse width, delivering approxi-

mately 800 rads per pulse (b approximately = 8 x 109 rads/s). The results

of this test are somewhat less precise than hoped for, because the linac

performance was below par, due to an inoperative second section. This

resulted in comparitively poor pulse-to-pulse reproducibility and an

uncertain beam profile at the sample. Figure 13 schematically indicates

the experimental configuration. Photodiodes and load resistors were biased

with a nine volt battery. The integrated photocurrent for each pulse was

measured by Tektronics 7844 556 oscilloscopes as shown, using the RC time

constant established by the scope input impedence and cable capacidence.

Cable capacidence was measured to be 2.71 nF, and since the oscilloscopes

were operated in parallel, and input impedence for each scope plug-in was

1 M. the effective resistance was 500 KC (RC ; 1.35 ms). The oscillo-

scope plug-ins were calibrated immediately prior to use.

The dose at the sample location, for any particular linac pulse,

was inferred from the output of a secondary emission monitor (SEM). The

secondary emission monitor is a thin metal foil inside the beam tube, in

front of the collimator and scatterer. Prior to sample irradiation, a

calibrated thermister/wheatstone bridge dosimeter was used to measure the

Jose at the sample location while simultaneously monitoring the integrated

output of the secondary emission monitor. The thermister calibration was
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3.82 rads per microvolt. The dose/SEM reading calibration was 374 ± 25 rads

per volt. The SEM readings were recorded automatically and printed on paper

tape. Each sample was exposed to from 100 to 300 pulses, with data to

measure AI/I and Q/D recorded on the first, last and at several intermediate

pulses. To support the SEM based dosimetry, Far West radiochromic film

dosimeters were attached to each sample. In addition to the sample group

which was actively monitored during the test (IS chips), three each, of the

four different type devices, were exposed passively, and in a biased condi-

tion, to 3 different total doses approximately 100 K rad, 300 K rad and

1 M rad ( a total of 72 chips). The accuracy of the Far West dosimeters is

6estimated to be approximately ± 5 percent at 10 rads, approximately ± 10

percent at 105 rads, and approximately : 20 percent below 105 rads. This

uncertainty is principally a reading error.

5.4 RESULTS

The results of the linac tests were also summarized in Table 1.

The measured radiation photocurrent for 60 photodiodes was 5.7 ± 1.8 x 10-13

coul/rad. Estimated experimental uncertainty is approximately 1 20 percent.

The primary experimental uncertainty is the assessment of the dose, at the

sample location, as inferred from the SEM reading. For diodes on any given

chip a diode-to-diode variation photocurrent of approximately 5 percent is

inferred from the radiation measurements. The uncertainty in this measure-

ment is unknown and is related to the uniformity of the electron beam at

the sample location. Variations in Q/D of as much as a factor of 2 were

observed from chip to chip. It is not possible to separate real chip-to-

chip response variations from pulse-to-pulse variations in the linac per-

formance.

In the preceeding tests, of generation I photodiodes, we noted

several examples of relative photocurrent response changing as a function

of total accumulated dose. Such behavior was noted only once in this test

of 15 chips (or 60 diodes), however, since these particular photodiodes
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Part #131-4 matched to within 1 percent both before and after irradiation,

relative changes in response are of negligable significance.

The optically induced photocurrents in the load resistors were

found to agree from unit to unit to approximately 4 ± 2 percent. We were

not able to make satisfactory Q/D measurements at the linear accelerator.

We suspect that we exceeded the common mode rejection ratio capacity of

our oscilloscope.

5.5 SUMMARY

This second generation of Harris/Dins photodiodes is much improved

over the first generation. The spectral response, R(X) (0.4 J- 0.1 amp/watt

at 632.8 pm), and the radiation induced photocurrent, Q/D (5.7 ± 1.8 x
-13

10 coul/rad), are also quite reasonable (based on the reported geometry).

Based on a measurement of approximately 60 photodiodes photocurrents from

matching diodes on any particular chip is identical to approximately 1.5 ± 0.5

percent by optical measuring techniques, and matched to approximately 6 ± 5

percent from ionization radiation measurements. Chip-to-chip variations

in Q/D or R(X) appeared to be ± 30 percent. Moreover, using simple optical

tests, chips can be hand selected for photocurrent matches better than 1

percent. Optical performance is still quite satisfactory after accumulated

dose of 1 x 106 rads.
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ATTN: J. Indelicato ATTN: Tech Data Center

Teledyne Ryan Aeronautical Westinghouse Electric Co
ATTN: J. Rawlings ATTN: L. McPherson

Texas Instruments, Inc Westinghouse Electric Corp
ATTN: R. Stehlin ATTN: H. Kalapaca
ATTN: A. Peletier ATTN: D. Crichi

Texas Instruments, Inc IRT Corp
ATTN: F. Poblenz ATTN: N. Rudie

TRW ystes ad EnrgyATTN: J. Harrity
ATTN: G. Spehar

ATTN: B. Gililland
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